The Science of Insecurity

Len Sassaman
Meredith L. Patterson
Sergey Bratus

Tribute to Len Sassaman

* Anonymity/privacy
researcher,
cypherpunk

 Moved to language-

theoretic security in
2009

e Because the future of

an open Internet
depends on
smoothing out the
attack surface

1980 - 2011

This talk in 1 minute

* Huge share of insecurity comes from
protocol and message format designs that,

to get processed securely, require solving
provably UNSOLVABLE problem:s.

* Designers/implementors set themselves up
to strive against a law of nature, and so
keep increasing attack surface.

* |t's not hard to stop doing this: think (simple)
language theory when handling inputs.

|II

Insecurity is the “new norma

e “Treat all systems as compromised”

— “There's no such thing as ‘secure’ any more.” --
Deborah Plunkett, NSA Information Assurance
Directorate

* “Long weeks to short months before a security

meltdown” — Brian Snow, in December 2010

— “are we there yet?” You bet we are, unless one
agrees to view LulzSec as “APT”/nation state

Not for lack of trying

Various “trustworthy computing” initiatives
Lots of “secure coding” books
Mounds of academic publications

New hacker-developed testing methods: fuzzing,
RE-backed binary analysis ...

Yet software still sucks!

And hardware — we don’t even know how much it
sucks (no tools to poke its attack surface -- yet)

The Internet is here: ubiquitous pwnage

OH FUCK

There must be something we are
doing wrong

* Science to engineers: some problems are not
solvable, do not set yourself up to solve them

b an

o 227

A X L X

“There is a law of nature that makes
it so, no matter how hard you try”

What is INsecurity?

Holes for sneaking in executable code?

— Nah, “malicious code” is not an end-all

since 2000 by hackers, since 2007-2008 by
academia — a lesson of ROP

Memory corruption?

In-band signaling?

Exposing unnecessary privilege?
All of the above?

Wikipedia on Causes of Vulnherabilities

* Complexity Vulnerability (computing)

* Familiarity 4.’\\ O"\

* Connectivity P o VL)
Ao

* Password management flaws N o

Fundamental OS flaws

Internet Website Browsing
Software bugs

Unchecked user input

Not learning from past mistakes

Vulnerability classifications?

[In] a certain Chinese encyclopaedia ... the animals
are divided into:
(a) belonging to the emperor, (b) embalmed,
(c) tame, (d) suckling pigs,
(e) sirens, (f) fabulous, (g) stray dogs,
(h) included in the present classification,
(i) frenzied, (j) innumerable,
(k) drawn with a very fine camelhair brush,
(1) others, (m) having just broken the water
pitcher, (n) that from a long way off look like flies.

--- Jorge Luis Borges,
“The Analytical Language of John Wilkins”

Nature and origins of insecurity:
Need a leap from “Lamarck” to “Watson and Crick”

— — f : . Sugar-phosphate "backbone”

LAMARCK 'S TABLE)
Nitrogenous hases

To Show the Oniginof Diffcrent Animals

<
WORMS ((Flahwrow] INFUSO Rl ANS
o | (Aecriescooea o Amivandy [} -
o PDL\'PQ ;.- Iv.—.,-f- Sexr- !
< i -1

e RADIATE Sy /et "~;~ 1

/ .V (. ‘J ;v
INSECTS

ARACHNIDS (Svifere 46

g e, o
, CRUSTACEANS ‘
ANNELIDS (Errthwwro, Saovwswws)
CIRRHEPEDES /Reorwais}
MOLLUSCS Saails Caovigain iy ?

e LR L

T“FISHES
REPTILES [iacl _ fogeebidianr])

BIHDS AMPHIEIAN MAMMALS

MONC f"RT—\‘ ES ' CETACEANS
o Y > CN S i 4
N s - - P S

veiy g S S — | ‘Weak hydrogen honds
[R UNGULATES
e B P Alaetocd fharemaate]

" . o Phosphate Sugar
s o b s A gt molecule molecule

Insecurity is about computation

e Trustworthiness of a computing system is
what the system can and cannot compute

— Can the system decide if an input is
invalid/unexpected/malicious & safely reject it?

— Can it be trusted to never do X, Y, Z?

* Exploitation is unexpected computation
caused reliably or probabilistically by some
(crafted) inputs

— See langsec.org/ for our exploits history sketch

“Is this input good?“/
“Can this input hurt?”

 Computation has some unsolvable
(undecidable) problems —
about recognition of inputs!

* Undecidable problem:
an algorithm that would solve
it in general cannot exist

Basic requirements in a
composed world

* One component/program accepting
Inputs

— Must accept or reject messages j>
safely

* Components communicating
(distributed system, layered
architectures)

— Messages must be

interpreted identically
by endpoints

Undecidable Problems Attack!

* Some message/file formats are so
complex that telling “good” /valid
inputs from “bad”/invalid ones
is undecidable

* Some protocols are so complex
that checking whether different
implementations handle N
them equivalently
is undecidable

Input Language Recognition

* Inputs are a language
— as in “formal language”
 Some languages are

much harder to
recognize than others

* For some, recognition
is undecidable

What happens when input
recognition fails?

 What internal code gets is not what it expects

* Primitives are exposed
— Memory corruption, implicit data flow
— Unexpected control flow, ... <you know it>

e A “weird machine” is born

— A more powerful, programmable execution
environment than intended or expected

“The Hidden/Scattered Recognizer”
a.k.a. “Shotgun Parser”

e Checks for input validity
are scattered throughout
the program, mixed with
processing logic

* Ubiquitous, deadliest
programming/”design”
pattern

“The Hidden/Scattered Recognizer”
a.k.a. “Shotgun Parser”

e Checks for input validity
are scattered throughout
the program, mixed with

processing logic

* Ubiquitous, deadliest
programming/”design”

pattern

“A weird machine is born”

“Exploitation is setting up, instantiating, and
programming a weird machine” —
Halvar Flake, Infiltrate 2011

* A part of the target is overwhelmed by crafted
input and enters an unexpected but
manipulable state

* Exploitis a program for WM,

written in crafted input é
* Inputs drive the unexpected § P K
computation that runson WM ¢ W
(o=

_';F’

Back to the Turing Future
to slay the Turing Beast!

* [nsecurity related to computation on inputs
must be understood from the Turing and
Church basics of computation — but with
exploit programming lessons in mind

— Academics study
models of computation

— Hackers study actual
computational limits
of real systems

Turing machines and undecidability

Turing Machine: the model of computer to study the
limits of what is computable

TM can do what your
computer, phone,
keyboard, NIC, ... can do

Undecidable problems:
No TM can solve them.

“The Halting Problem is Undecidable”

Cornerstone: the Halting Problem

“I can build a TM that takes another TM as
input and decides if it will ever terminate”

Cornerstone: the Halting Problem

-
“I can build a TM that takes another TM as’\\,)

. U N3\
input and decides if it will ever ternﬂn‘@& -’
7\ Salle

~

Some designs force programmers of
input recognizer to “solve” the
UNDECIDABLE Halting Problem

* Halting Problem w.r.t. inputs and
communications (protocols, formats):

* Bad news: no amount of testing or “fixing”
will help

* Good news: they can be avoided

There is no “80/20” engineering
solution for the Halting Problem

 Same as for Perpetual Motion
* |f someone is selling it, run away

The history of the Uncomputable

e Leibniz: “Can a machine determine truth values
of mathematical statements”? [17t™ century]

* Hilbert’s Entscheidungsproblem, [1928]
— “Is an arbitrary logical statement valid or invalid”?

* Church [1936], Turing [1937]: Negative!
— Based on work by Kleene, Goedel [1930s]

Russell wants you to be happy

@quinnnorton

Quinn Norton

I can't show up for the general strike
without working. D'oh! #conundrums

2 Nov via twicca > Favorite Retweet Reply

@maradydd

Meredith L Patterson

quinnnorton Bertrand Russell loves you
and wants you to be happy.

Programs and exploits as proofs

e Curry-Howard correspondence: programs
are proofs and vice versa

* Exploits are proofs too: by construction of
unexpected/hostile computation

* Formal Duality? <TBD>

Languages vs Computation

* Inputs are a language
— as in “formal language”
 Some languages are

much harder to
recognize than others

* For some, recognition
is undecidable

The language hierarchy

recursively enumerable ™
/—\ '.'

/ context-sensitive ‘

y
¥
y
¥

| yd ™~ t |
-/ contextfree |

)\

\
3 .
)

S -
- -~

Regular Languages

* Finite state machines (FSM)
Simple nesting, delimiters

Ex.: a[ab]+a | b[ab]+b

Note: Matching recursively
nested structures with Regexps will fail

— ((([({(...)N]))) , XML, HTML, anything with
unlimited escaping levels, ...

Context-free Languages

* Matching recursively
nested structures:

finite top
control | &

pushdown automata State
(FSM + stack)

input tape
stack

Ex.: Arbitrary depth of balanced parentheses
(((L{(---)}1))), S-expressions, ...

Context-sensitive Languages

* Require a full Turing machine —
when decidable

Ex.: some metadata is needed
to interpret the rest of the data

Ex.: protocols with length fields are
weakly context-sensitive (decidbable)

Think of parsing an IP packet past a few
corrupted bytes

Turing-complete Languages

* Telling if input is a program that
produces a given result:

UNDECIDABLE EEE\J

(a.k.a. Rice’s Theorem)

Ex.: telling if any given code or
message with macros/scripts
is ‘good’ or ‘malicious’
without running it

The language hierarchy

recursively enumerable ™
/—\ '.'

/ context-sensitive ‘

y
¥
y
¥

| yd ™~ t |
-/ contextfree |

)\

\
3 .
)

S -
- -~

Occupy Input Handlers!

T

STOUr @~ A

Is it all about parser bugs?

No, but that’s a large chunk of it

Every program component that receives input
from others has a recognizer for
the language of valid or expected inputs

If the recognizer does not match the language,
it is broken

If neither is well-defined or understood, the
program is broken

Languages are everywhere!

Network stacks: valid packets make a language
— Stack is a recognizer at every layer/protocol

Servers: valid requests make a language
— e.g. SQL injection is a recognizer failure

Memory managers: heaps make a language
— Heap metadata exploits abuse its context-sensitivity

Function call flow: valid stacks make a language

— Context-sensitivity again, which bytes are data,
which are metadata®?

An implicit recognizer is a bad
recognizer

* Ad-hoc recognizer logic scattered throughout
the program is hard to test and debug

* Lots of intermixed recognition/processing

state => lots of unexpected states, data flows,
and transitions (hello “weird machine”!)

— Weird machines run on borrowed state
— (cf. Halvar’s Infiltrate 2011 talk)

* Don’t process what you cannot first recognize!

Occupy Program State!

Regard all valid/expected inputs as a
formal language

Know and be strict about what your input
language is

Know what computational power it requires to
get recognized

— Never parse nested structures with regexps!

Write the recognizer explicitly or, better,
generate it from a grammar

Stay away from Turing-complete input
languages

Occupy Message Formats!

“Regular is a safe place to be”

/ | \\'

context-sensitive

'/ context-free

»
- ‘ §
\ o ~—— f / T 1 <]]
\ - - , .,
o~ g
1 o 1 4
1
' ¥ 4
¥y y
' 4 " 4
y
¥

\ \ \ { \ "l'
\\\ ‘.. re g U l ar 'c. // ;

u

Occupy Protocol Design!

£AX CMUCTS SN M

Il. Composition & communication

Computational equivalence
between components:

“Are you seeing
what I’'m seeing?”

I2
AlI3C

14

Insecurity: miscommunication

* Today’s systems are distributed/composed,
with many talking components

I

Parsers/recognizers are involved
across every interface!

Parser computational equivalence

* Parsers involved in a protocol/exchange must
parse messages exactly the same way

— For X.509 SSL certs between CA and browser,
formally required

— Between a NIDS and its protected target,
effectively required

* Equivalence must be assured/tested
— with automation tools, unit tests, integration tests

The X.509 Case Study

e X.509’s Common Names (CN) :
an ambiguous language, ad-hoc parsers =>

— Certificate Signing Request (CSR) parsed differently by
the signing CA and
certificate consumer (e.g., browser) =>

— Browser believes the CA signed this cert for google.com,
ebay.com, paypal.com, ...

20+ 0-day from Parse Tree Differential Analysis

— Sassaman, Patterson “Exploiting the Forest with Trees”
— ASN.1 BER ambiguous, considered harmful

Halting Problem, hello again

* Testing computational equivalence for two
automata recognizing regular languages (regular
expressions) and deterministic pushdown
automata is decidable

— Tools/software automation can help

e But for non-deterministic pushdown automata
or stronger it is UNDECIDABLE

— No amount of automated testing effort will give
reasonable coverage

The curious case of the IDS:
moving the Halting Problem around

* Trying to “fix” Input Recognition Halting
Problem of a scattered and vaguely defined
recognizer with another, “less vulnerable”
component?

— But it can’t be fixed! So a “fix” must backfire.

* So you get the Endpoint Computational

Equivalence Halting Problem between the IDS
stack and the target’s input protocol handling!

4

“Insertion, Deletion, Evasion” & other
horsemen of the IDS/IPS Apocalypse

 Ptacek & Newsham, 1998
* Vern Paxson, 1999--...

Figure 4: Insertion of the letter "X’

“Conservation of
(bad) computational power”

 Computational power once created cannot be
destroyed

* “Dark energy” of scattered parsers will
resurface

* You have not fixed the Halting Problem due to
input language complexity, you just converted
it into another Halting Problem

Stay away from the Halting Problem

* Choose the simplest possible input language,
preferably
regular or at most
deterministic
context-free

Turing-recognizable

decidable

nondeterministic
context-free

........

.~ .
-~ -
~~~~~~



Occupy the IETF!




Time to re-evaluate Postel’s Principle?

“Be conservative in what you send;
be liberal in what you accept.”

-- it made the Internets happen and work

-- its misreadings made the Internets
the way they are now

Postel’s Principle needs a patch:
e Sassaman & Patterson, PhNeutral, March 2010

* Dan Geer, “Vulnerable Compliance” ;login:
December 2010 (free online)



The Postel’s Principle Patch

- Be liberal about what you accept

+ Be definite about what you accept

n

+ Treat inputs as a language, accept it with a

+ matching computational automaton, generate its

+ recognizer from its grammar.

+

+ Treat input-handling computational power as privilege,
+ and reduce it whenever possible.



Take-away?

Good protocol designers don’t allow their
protocols to grow up to be Turing-complete

Ambiguity is Insecurity!

If your application relies on a Turing-complete
protocol, it will take infinite time to secure it

Rethink Postel’s Law



Money talks

Language-theoretic approach helps to
1. save mis-investment of money and effort,

2. expose vendors that claim security based on
solving perpetual motion,

3. pick the right components and protocols to
have manageable security,

4. avoid system aggregation/integration
nightmare scenarios.



Do not mistake complexity for
functionality

e Saving money on future upgrades thanks to
Turing-complete "extensibility"?

See that you are not going to lose more on

security/mediation/controls, eaten up by the
Turing Beast.

* "This system is very extendable/updatable
because it embeds macros/scripting/
programming language in data" -- run like hell



Occupy Input Handling!

“Stop Weird Machines”

“No More Turing-complete Input Languages!”
“Reduce Computing Power Greed!”
“Ambiguity is Insecurity!”

III

“Full recognition before processing

“Computational equivalence for all protocol
endpoints!”

“Context-free or Regular!”



Thank you!

http://langsec.org

http://langsec.org/occupy/



